Making Biomass Briquettes from Wheat Straw Biofiller Production Waste

Subtitle: Wheat Straw Combustion

A.J. Kozlowski¹, A. Goel²

Omtec Inc., Ridgetown, ON CANADA

I e: jkozlowski@omtec.ca, 2 alok@omtec.ca

Omtec

73 Marsh Street, P.O. Box 578 Ridgetown, Ontario, NOP 2C0 CANADA

t: 519.488.1421 f:519.397.9091

Growing the Margins, London, ON/OMTEC-Kozlowski

OMTEC Product Development

- BIOFILLER PRODUCTS
- WHEAT STRAW BRIQUETTING
- WHEAT STRAW COMBUSTION

OMTEC Product Development Pipeline

- Biofiller
- Fuel Pucks (Briquettes) for Greenhouse
 - Heat
 - CO2 (from flue gas)
 - Electricity (IkW microturbine)
- Plastic Composites

Production Goal: Zero Waste process

Biofillers

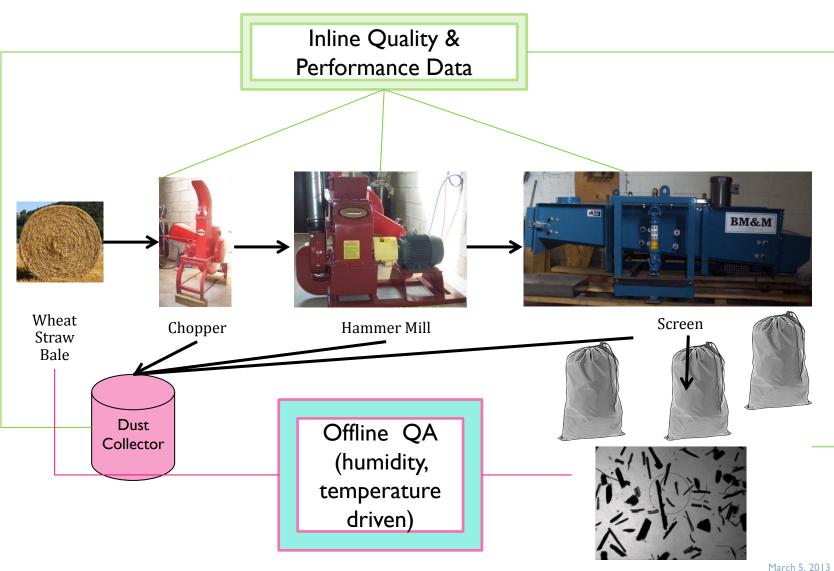
- Fillers:
 - >I um lowering its cost per unit volume
 - < I um impact modifiers
- Biofillers are used in PP and PVC plastic composite materials:
 - PP (polypropylene) [1]:
 - Ropes, lab equipment
 - Global market volume of 45.1 m mT, US\$65b (2008) [2]
 - Up to 75% by weight
 - Typ. Particle size 10 60 mesh (2,000 180 um)
 - PVC (polyvinyl chloride) [1]:
 - 3rd most widely used plastic: construction materials (sewage pipes)
 - global market volume of 32.3 m mT (2011) [3]
 - Up to 60% by weight, but 20%-40% typ.
 - Typ. particle size: 40-120 mesh (425 125um)

Reference:

[1] Juan Bravo - Struktol Company of America, "Engineered Process Additives for the Global Wood-Plastics Composities Market", Nov. 2007 http://www.struktol.com/pdfs/STP0255%20-%20Engineered%20Process%20Additives.pdf

[2] http://en.wikipedia.org/wiki/Polypropylene

[3] http://www.prnewswire.com/news-releases/pvc-market-demand-continues-to-rise-despite-toxic-dangers-in-everyday-products-167706545.html


OMTEC Biofiller Grades (2013)

Primary products

- WSBF-25 ~1000um avg. particle length
- WSBF-35 ~500um avg. particle length

Biofiller Production

WHEAT STRAW BRIQUETTING

Growing the Margins, London, ON/OMTEC-Kozlowski

Biomass Combustion - Advantages

- Contributes ~ 14% of global energy supply
- Renewable (annual replenishment cycle): reduction in fossil fuel use
- CO2 reduction/CO2 neutral compared to oil and gas
- Local job employment (50 km)

Lehra LBP 100 Briquettor

Lehra LBP 100

MODEL NO.	PRODUCTION	POWER REQUIRED
LBP 100	2600 kg/h	91 HP

- 4" diameter ram type press
- 75HP main motor

Wheat Straw Briquette

• Form Factor:

• Briquette 90mm (3.75")diameter

• Solid Biofuel Standards in EU:

• CEN/TC335

Advantages of Briquettes over Pellets

 Smaller surface to volume ratio of briquette keeps it burning slower (more controlled), and longer

WHEAT STRAW COMBUSTION

Growing the Margins, London, ON/OMTEC-Kozlowski

March 6, 29<u>5</u>3 p. 12

Biomass Combustion

 Approx. I4% of world energy is derived from biomass[I]

[1] M. Olsson, "Concentrations of compounds in smoke from wheat straw pellets during the different combustion stages", Biomass and Bioenergy, Volume 30, Issue 6, June 2006, pp. 555–564.http://publications.lib.chalmers.se/records/fulltext/10226.pdf

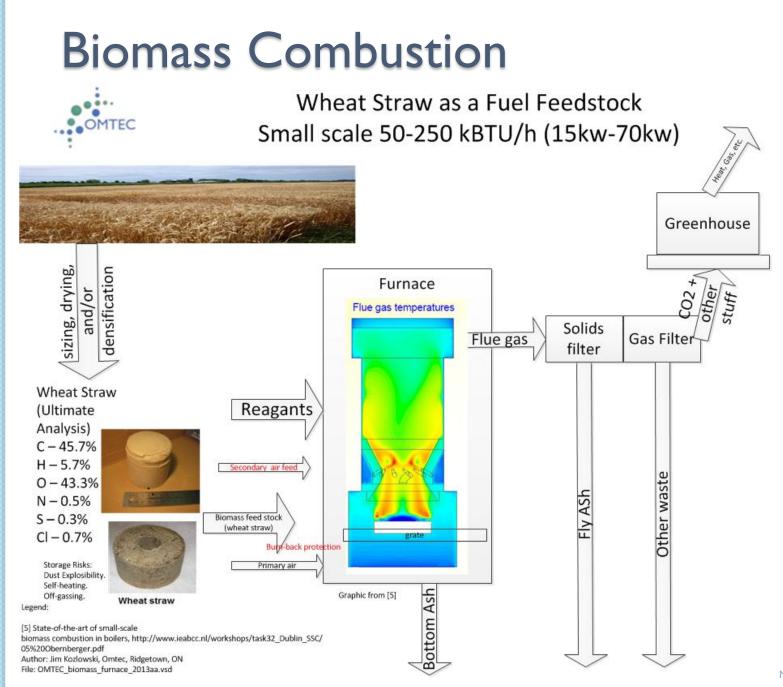
Biomass Combustion

Basic Combustion Equation:

something + O2 ---> H2O + CO + CO2

CO = zero (0) for complete combustion

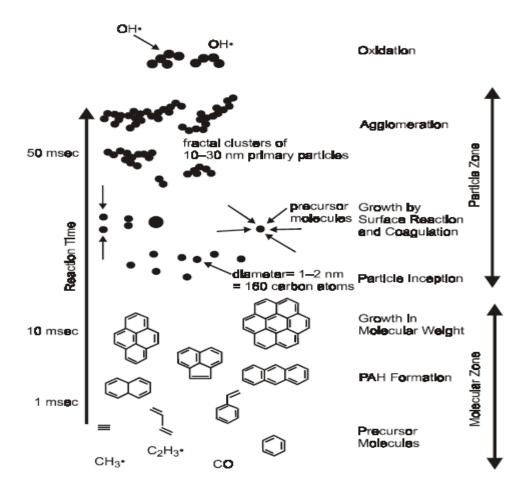
Biomass Combustion Equation:


 $C H_{1.44} O_{0.66} + 1.03 O^2 = 0.72 H2O + CO2 (+Heat)$

 Note: CH_{1.44}O_{0.66} is the approximate chemical equation for the combustible portion of biomass [1]

Reference:

[1] Introduction to Biomass, http://www.extension.org/pages/31758/introduction-to-biomass-combustion


Biomass Combustion - Temperature Effects

Т	Effect	Heat IN/OUT	
<1200C	Complete melting		
<1000C	Ash softening points		
700-900C	Sintering temperatures of cereals, eg, wheat straw		
>700C	gasification (H2, CO) [1]	heat IN	
>700C	30-75% of chlorine released [2, p.40]		
650-750C	Normal operation of catalytic converter		
500C-700	C Dissociation/carbonization (CO, H2) [1]	heat IN	
<500C	25-70% of chlorine is released [2, p. 40]		
280C-500	C Devolatilization (organics, tars, CO2, CO) [1]	heat OUT	
250C-280C Torrefaction (Extractives, CO2, CO) [1] heat IN			
230C-250C Depolymerization (Acetic acid, methanol, CO2, CO) [1] heat IN			
< 200 C	Drying (H2O) [1]	heat IN	

References:

[1] Fernando Preto, CanmetENERGY, Natural Resources Canada, Pyrolysis, Char and Energy, 2008, Canmet Energy Canada. http://www.biochar.ca/files/Can%20Biochar%20Initiative%20Preto%20Dec08.pdf
[2] Jennifer Ruth Dodson, "Wheat straw ash and its use as a silica source", Ph.D., thesis, University of York, 2011, http://etheses.whiterose.ac.uk/1931/2/J_Dodson_PhD_thesis.pdf

Schematic picture of soot formation

Source: H. Bockhorn, Soot Formation in Combustion (vol. 59 in Series in Chemical Physics, Springer-Verlag, Berlin, 1994.)

Wheat Straw Briquettes - Ash

Ash Content (wt-%-ash) – Source [1], except where noted.

SiO2 – 59.9% CI – 0.7% (0.7% Ultimate analysis; most in gas phase as HCI) [2] K2O – 16.9% CaO – 7.3% P2O5 – 2.3% Fe2O3 – 0.5% MgO- 1.8% Na2O – 0.4% Al2O3 – 0.8%

Other – 10.1%

Reference:

[1] Hiltunen, M., et al., COMBUSTION OF DIFFERENT TYPES OF BIOMASS IN CFB BOILERS, 2008, <u>http://fwc.com/publications/tech_papers/files/TP_CFB_08_05.pdf</u>
[2] Definition of a standard biomass, 2004 http://www.renew-fuel.com/download.php?dl=del_sp2_wp1_2-1-1_05-01-10-fzk.pdf&kat=14

Wheat Straw Briquettes – Flue Gas

Aerosols from biomass originate from:

- Incomplete combustion (soot)
- Polyaromatic (PAH) hydrocarbons
- Unburnt carbon
- Unburnt biomass fragments

Reference: Thomas Nussbaumer (Ed.), Aerosols from Biomass Combustion, 200, <u>http://ieabcc.nl/publications/aerosols.pdf</u>

Wheat Straw Briquettes – Flue Gas

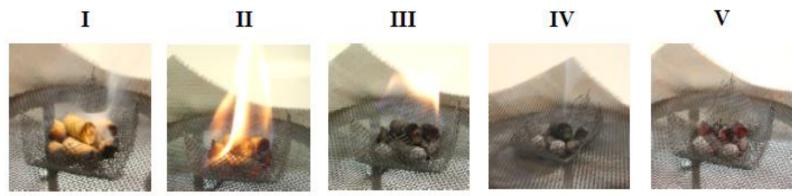
PMI0 – Data not known.

PM2.5 – Emission Factors (EFs) from high and low combustion efficiency (CE) wheat stubble burns were 0.8 and 4.7 g/kg, respectively, and decreased with increasing CE [1]

PMI - alkali transformation causes high emissions of PMI, peaking in the 200um-300um range [2]

References:

[1] Ranil Dhammapala, Candis Claiborn, Jeff Corkill, Brian Gullett, Particulate emissions from wheat and Kentucky bluegrassstubble burning in eastern Washington and northern Idaho, Atmospheric Environment 40 (2006) 1007–1015 http://www.ag.uidaho.edu/bluegrass/FromJohn/Kentucky%20bluegrass/Emissions/KBG_particulate_emissions.pdf
[2]] Fagerström, I Näzelius, D Boström, M Öhman, C Boman, Reduction of fine particle- and deposit forming alkali by co-combustion ofpeat with wheat straw and forest residues, http://pure.ltu.se/portal/files/32600648/26. Fagerstr m et al 2010 Imp of fuel quality.pdf"



Wheat Straw Combustion

Gaseous Output

Five (5) sequential phases of combustion, identified which gases concentration varies: [1]

- Initial smouldering (I): Methoxyphenols from the lignin of the fuels released at high concentrations.
- Early flaming (II)
- Late flaming (III)
- After-flame smouldering (IV) : releases high concentrations of compounds that are hazardous to health and the environment (e.g., benzene)
- Final glowing (V)

References:

[1] M. Olsson, "Concentrations of compounds in smoke from wheat straw pellets during the different combustion stages", Biomass and Bioenergy, Volume 30, Issue 6, June 2006, pp. 555–564.http://publications.lib.chalmers.se/records/fulltext/10226.pdf

Wheat Straw Combustion

Flue Gas (Combustion Gas) includes:

- Carbon_dioxide (CO2) excess CO₂ can also be injurious, with chloroplast disruption and chlorosis often observed above 1000 µmol CO₂ mol⁻¹ [2]
- Carbon_monoxide (CO)
- Ethylene (plant hormone, negative effect if in excess)
- Propylene (harmful in greenhouses)
- NOx (mostly due to fuel composition, N 0.5m-% primary micronutrient)
- SOx (mostly due to fuel composition, S 0.3m-% secondary micronutrient)
- Benzene (carcinogenic to humans)
- Methane
- Ethane
- Propane, etc.

References:

[1] M. Olsson, "Concentrations of compounds in smoke from wheat straw pellets during the different combustion stages", Biomass and Bioenergy, Volume 30, Issue 6, June 2006, pp. 555–564.http://publications.lib.chalmers.se/records/fulltext/10226.pdf

[2] Plants in Action, 13.4.1 Greenhouse cropping, http://plantsinaction.science.uq.edu.au/edition1/?q=content/13-4-1-greenhouse-cropping

Wheat Straw Combustion

Combustion Gas	Concentration	Notes
CO2	0.25-0.35 kg/hr/100m2 needed to maintain 1300 ppm (optimum for growing plants.) [1]	Max 5000 ppm if more can cause "dizziness or lack of coordination"; necrosis of old tomato and cucumber leaves. [1]
SO2	0.2ppm cause acute necrosis.	Limestone is often added to the bed material for SO2 capture. [1]
Ethylene	0.05ppm can cause "premature senescence on tomato and cucumber plants"	
со	Levels > 50ppm CO indicate the presence of ethylene which cause crop damage [1]	Indicator for incomplete combustion. [1]
NOx (incl. NO2)	an Diovide in Groophoures" Eastsheet, Eab 2012	Caused by high temperature burners. Can diminish grow or cause necrosis. [1] Typically reduced in flue gas by Selective catalytic reduction [1]

Source: [1] OMAFRA, "Carbon Dioxide in Greenhouses" Factsheet, Feb 2012

Summary

- Omtec is developed zero waste production processes for biofiller
- Wheat Straw waste made into 90mm (3.75") briquettes (5000-7000 BTU/lb)
- Combustion flue gas contains complex mix of gas and solids, but can be filtered to provide CO2 for greenhouses (R&D)
- Ash has some beneficial uses, e.g., cement

Questions?

