About Wheat Straw ...

Wheat - a grass that is cultivated throughout the world. Second or third in worldwide production after corn (maize), depending on the year. Two major forms of wheat: winter wheat and summer wheat. Leading source of vegetable protein in human food [14].

The wheat straw cell wall is a natural composite composed of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin [9, p.17] The cellulose microfibrillar crystals are about 20nm in diameter and 150-200nm in length [10]

 Wheat straw is one of the most abundant renewable resources. [11]

 About 1.9 x 10^9 tons of wheat straw were annually produced world-wide, along with 6.2 x 10^8 tons of wheat production [11].

 Annual Global Production of wheat lands
 690 Tg
 [32]

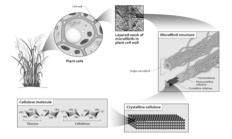
 Annual Global Production of wheat
 223 Tha
 [32]

Jse	Comment	Link
	Absorbs about 300%	
	of its weight in	
Animal bedding	moisture	[link]
oil fertilizer		
eplacement (high N):	\$0.01-\$0.02/lb	
uel liquid/bioethanol		
nethane production		
erosion control		
ivestock bedding		
nushroom compost		
ubstrate		
activated carbon	for filtration	
animal feed		
olid core interior		
home) door fillers		_
ow cost building panels		
valls (load/non-		
pearing), floors and		
eilings (Romania)		
biosorbent/metal ion		
emoval (e.g., Cr)-		
wastewater		
biofiller		

Estimate of crop residues in Ontario (OMAFRA, 2006)

		Estimated			
		annual		Estimated	
		production	Estimated Crop	heat value	
		(AP) (000)	Residues (CR) (000)	from crop	
Crop	Area (000) acres	tons	tons	(10^6 MJ)	Source
Wheat	123	31 1674 @1360	753 @45% of AP	13560	[8, p, 41]

				Energy		
Item	Density	Units		Density	Units	Source
bulk density of loose						
wheat straw	18	kg/m3				[3]
	40	kg/m3				[34]
baled biomass, large						
round bales, hard core	190-240	kg/m3		3.4-4.5		[3]
	120	kg/m3				[34]
Ground biomass (i.e.,						
hammermill)	200	kg/m3		3.6		[3]
briquettes	350	kg/m3		6.4		[3]
cubes	400	kg/m3		7.3		[3]
pucks	480-640	kg/m3		8.6-12.0		[3]
pellets	550-700	kg/m3		9.8-14.0		[3]
torrefied pellets	800	kg/m3		15		[3]
bio-oil	1200	kg/m3		20		[3]
	r			-		
Physical Content of						
Wheat	Mass Percent	Units	Source	-		
Internodes	68.5		[4, p. 2-3]	_		
Leaves-sheaths	20.3		[4, p. 2-3]	4		
Leaves-blades	5.5	%	[4, p. 2-3]			
Nodes and Fines	4.2		[4, p. 2-3]			
Grain and Debris	1.5	%	[4, p. 2-3]	1		

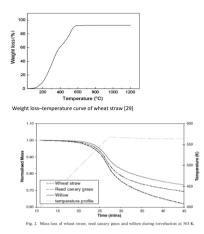

Chemical composition				Internode				
of wheat straw			Source	[%]	Node [%]	Leaf [%]	Source	Comments
								(C6H10O5)n a long cha
								polysaccahride
Cellulose	35-45	%	[33, p. 1904]					carbohydrate
holocellulose	58.5-72.9	%	[4, p. 2-1]					
alpha-cellulose	33-40	%	[4, p. 2-1]					
		12	1.9 8. 5 5					Rich in 5-carbon sugar
hemicellulose	25-32	%	[4, p. 2-1]					(pentoses.)
								Total lignin=Klason ligr + soluble lignin. One o the most organic compounds on earth after cellulose and chif lignin yields more ener when burned than
lignin	16-23	%	[4, p. 2-1]		23.22		[4, p. 2-3]	cellulose [31]
ash	4-10	%	[4, p. 2-1]			56.95	[4, p. 2-3]	
lipids	1-2	%	[33, p. 1904]. Of lipids: fattry acids 25%, free fatty alcohols (ca. 20%), high molecular weight esters of long- chain fatty acids esterfied to long-chain fatty alcohols.					Lipids can be used to produce high value waxes, used in cosmet and personal care products. Lipds canbe extracted with acetone in a Soxhlet apparatus after 8h.
silica and silicates	2.0-5.5		[4, p. 2-1]	5.93		12.06	[4, p. 2-3]	
EtOH-Benzene extr.	2.9-5.8	%	[4, p. 2-1]					
Fibers	38-42	%	[4, p. 2-1]					Consist of the cellulose
Fiber length (mm)		~	() P = 4	1.73	0.82		[4, p. 2-3]	second of the cellulose
noer iengen (mm)	1		1	1.73	0.02	1	[[5] [2] [2] [2]	1
Item	Internode [%]	Node [%]	Leaf [%]	Source	Comments	1		
Straw Fractions - Hand Harvested Madsen (%)	Inc. now [78]			[4, p. 2-5]	connicits			
Straw Fractions - Baled Madsen, estimated (%)		80 1	1 9	[4, p. 2-5]				

Item	Internode	Node	Leaf	Whole	Source	Comments
Mass (%)	49	6	45		[4, p. 2-5]	
NAFL (mm)	0.61	0.28	0.35	0.48	[4, p. 2-5]	
WAFL (mm)	1.2	0.65	0.79	1.04	[4, p. 2-5]	
Fines (%)	51.3	51.4	49	51.3	[4, p. 2-5]	

NAFL=Numerical Average Fiber Length WAFL=Weighted Average Fiber Length

Source: http://www.biologie.uni-hamburg.de/b-online/library/webb/BOT311/PlantCellWalls00/CellWallHemiLab_small.jpg

Source: http://www.intechopen.com/source/html/44414/media/image1.png


				Detection	Internode		1	1	
Item	Gross Amount	Units	Source	Limit [ppm]	[ppm]	Node [ppm]	Leaf [ppm]	Source	Comments
Chemical Components									
Aluminum (Al)				20	<20-20	<20-20	40-100	[1]	
Boron (B)					<20	<20	<20-30	[1]	
Barium (Ba)					28-83	39-97	47-86	[1]	
Calcium (Ca)					1130-3300	2200-3470	5950-8230	[1]	
Chromium(Cr)					<1	<1	<1-3	[1]	
Copper (Cu)					3-5	22-68	4-6	[1]	
Iron (Fe)				5	21-87	22-68	88-175	[1]	
Potassium (K)				1000	13000-34000	20000-65000	920-1710	[1]	K= primary micronutri
Magnesium (Mg)				10	500-2970	930-2770	2000-2790	[1]	
Maganese (Mn)				0.5	10.4-25.1	9.3-27.2	34.9-128	[1]	
Molybdenum (Mo)				1	<1-2	1-2	<1-1	[1]	
Sodium (Na)				50	60-260	20-1570	50-130	[1]	
Phosphorus (P)				20	330-1030	350-1020	920-1710	[1]	P= primary micronutri
Tin (Sn)				5	<5-6	<5-7	<5-7	[1]	
Strontium (Sr)				0.5	5.8-15.9	9.6-18.8	22.1-37.8	[1]	
Zinc (Zn)				1	7-24	12-25	15-24	[1]	
Proximate Analysis (Wh	ieat Straw)						Comments		
Volatiles	69	m%	[2, p.6]	75.27	m%	[5, p. 1561]			
Fixed Carbon	23	m%	[2, p.6]	17.71	m%	[5, p. 1561]			
		1	1	1					educed by adding lime
		1					(CaO) [18, p.		
		1							harvest in spring can
Ash	8	m%	[2, p.6]	7.02	m%	[5, p. 1561]	reduce ash co	ontent, largely by red	ucing potassium K [19, p.?].

Ultimate Analysis (dry						
biomass)	Qty	Unit	Source	Qty	Source	Comments
с	45.7	m%	[2, p.7]			
н	5.7	m%	[2, p.7]			
0	43.3	m%	[2, p.7]			
						Nitrous oxides (NOx) emissions will be proportional to the N2 content. N= primary
N	0.5	m%	[2, p.7]			micronutrient.
S	0.3	m%	[2, p.7]			S=secondary micronutrient.
a	0.7	m%	[2, p.7]	0.1%-0.6%	[6]	Most chlorine released as HC in the gas phase [2, p.9]. Higher risk of dioxin formation [6]. 90% of Cl can be removed by complete immersion in water in < 2 min, [27, p. 41]. K Na, Cl can be "removed by spraving water over the top of a 30 cm
	0.7	11176	[z, p./]	0.1%-0.8%		[27, p. 41]. K, Na, Ci can befemoved by spraying water over the top of a 50 cm
ĸ	I	1	I	0.7%-0.8%	[6]	

Lower Heat Value (LHV)	Qty	Unit	Source
Wheat Straw (dry)	7680	BTU/lb	[13, p.5]
Wheat Straw (dry)	17.86	MJ/kg	[13, p.5]
Wheat Straw (20% m.c.)	5908	BTU/lb	[13, p.5]
Wheat Straw (20% m.c.)	13.74	MJ/kg	[13, p.5]

High Heat Value (HH	HV, dry biomass)		Source			Source			
Experimental	17100	kJ/kg	[2, p.8]	19100	kJ/kg	[20, p. 35]	I		
Ash Content (dry bio	omass)						Т		
K2O	2.2	%	[2, p.9]	25.6	wt-%-ash	[5, p. 1561]	16.9	wt-%-ash	[21]
CaO	0.3		[2, p.9]		wt-%-ash	[5, p. 1561]		wt-%-ash	[21]
SiO2	3.6	%	[2, p.9]	55.32	wt-%-ash	[5, p. 1561]	59.9	wt-%-ash	[21]
ci	0.7	%	[2, p.9]						the chlorine content in agrobiomass like straws is lowe than in dry years."
P2O5	0.2	%	[2, p.9]				2.3	wt-%-ash	[21]
Fe2O3	<0.1	%	[2, p.9]				0.5	wt-%-ash	[21]
MgO	0.1	%	[2, p.9]	1.06	wt-%-ash	[5, p. 1561]	1.8	wt-%-ash	[21]
NA2O				1.71	wt-%-ash	[5, p. 1561]	0.4	wt-%-ash	[21]
AI2O3				1.71	wt-%-ash	[5, p. 1561]	0.8	wt-%-ash	[21]
Other				1.71	wt-%-ash	[5, p. 1561]	10.1	wt-%-ash	[21]

		Nominal	
Omtec WSBF Grade	Size (Mesh/um)	Avg Length	OMTEC Application
WSBF-TH (chopped			
straw)		5+ mm	
WSBF-15 (large			
fibers,#2)	>16 mesh	3.5 mm	Fuel Pucks
WSBF-25 (medium			
fibers, #1)	16 – 35 mesh	2 mm	Automotive Plastic
WSBF-35 (fine			
fibers,#3)	< 35 mesh	0.75 mm	Automotive Plastic
WSBF-45 (dust)		< 0.1 mm	Fuel Pucks

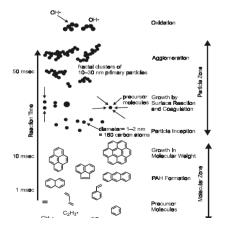
Mass loss of wheat straw, reed canary grass, and willow during torrefaction at 563K (290 C) [30, p. 847]

Temperature	Process (overlap)	Major Produ	Heat	Source
< 200C	Drying	H20	IN	[12, p. 11]
		Acetic acid,		
		Methanol,		
230C-250C	Depolymerization	CO2, CO	IN	[12, p. 11]
		Extractives,		
250C-280C	Torrefaction	CO2, CO	IN	[12, p. 11]
	decomposition of			
	hemicellulose starts at			
	temperatures			
	above 473 K (200C)			
	and full devolatisation			
	will occur by 623 K			
	(350C) with the major			
	products being H2O,			
	CO2, CO, and char,			
	as well as traces or			
	low molecular weight			(a.a. a.m)
200C - 350C	organics			[30, p. 847]
		Organics,		
		Tars, CO2,		· · · · · · ·
280C-500C	Devolatilization 25%-75% of chlorine	со	OUT	[12, p. 11]
<500C	released			[27, p.40]
	Dissociation/			
500C-700C	Carbonization	CO,H2	IN	[12, p. 11]
	Normal operation of			
	catalytic converter			
650-750C				
>700C	Gasification	H2, CO	IN	[12, p. 11]
	Remaining chlroine			
>700C	released			[27, p.40]
	PAHs formed, total			
	yield increasing with			
	temperature and			
	residence time in the			
	furnace. At higher			
	temperatures, they			
	are thermally			
700C-900C	decomposed.	1		[6, p. 561]

5 Phases of Combustion		
[6]	Comments	Source
	Methoxyphenols from	1
	the lignin of the fuels	
	released at high	
Initial smouldering (I)	concentrations.	[6]
Early flaming (II)		
Late flaming (III)		
	released high	
	concentrations of	
	compounds that are	1
After-flame	hazardous to health	
smouldering (IV)	and the environment	[6]
Final glowing (V)		

Concentrations of compounds in smoke from Wheat Straw	pellets during the different combustion stages:

No.of analyses	.of analyses 5 5 5 6 6														
											Final				
		Carcinogeni			Early		Late flaming		After-flame		glowin				
	CAS	c?	Initial smouldering (I)		flaming (II)		(111)		smouldering (IV)		g (V)		Source	Notes	Link
			conc.	s.d.	conc.	s.d.	conc.	s.d.	conc.	s.d.	conc.	s.d.	[6]		
Carbon_dioxide			6100	1700	120000	20000	110000	20000	28000	4000	21000	2000	[6]		
Carbon_monoxide			630	300	220	140	270	110	3100	400	2200	400	[6]		
														colorless, odorless;	
														Low concentrations	
Methane			11	5	5.5	3.2	6.5	2.4	750	470	13	9	[6]	are not harmful.	link
														May cause central	
														nervous system	
														depression. Causes	
														adverse	
Ethane			7.5	3.8	1.2	0.9	1.8	0.6	300	190	0.4	0.5	[6]	cardiovascular effects.	link
														Colorless. Not	
Ethene (ethylene)	74-85-1		7.5	3.4	13	8	5.5	1.9	100	70	0.4	0.4	[6]	carcinogenic.	


	1		1	1							1	,		1 1
													Colourless gas. Odourless. EXTREMELY	
													FLAMMABLE GAS.Low concentrations are	
Pronana			2.5	3 1.5	0.3	0.4	0.5	0.2	76	54	<0.03	[6]	not harmful. Not a carcinogen.	link
Propane			2.1	5 1.5	0.5	0.4	0.5	0.2	/0	54	10.05	[0]	May cause central	IIIIK
													nervous system	
Pronono (propulano)			5.5	2.9		1.4	1.2	0.4	98		0.04	0.07 [6]	depression. Not	link
Propene (propylene) Ethyne			5.		2.2	1.4 2.6	1.2	0.4				0.07 [6]	carcinogenic.	link
1,3-Butadiene			1.4		0.04	0.01	0.06			9	<0.03	[6]		
													Carcinogenic to	
													humans.	
													CARCINOGEN. Known to cause: cancer of	
													the blood or blood	
													system. Clear	
													colourless liquid.	
													Aromatic odour. HIGHLY FLAMMABLE	
Benzene				0.4	0.8	0.4	0.5	0.1	30	18	1.4	1 [6]	LIQUID AND VAPOUR.	link
Methylbenzene			1.		0.2	0.2						0.2 [6]		
													polycyclic aromatic	
Naphthalene			0.:	0.1	0.3	0.3	0.2	0.1	8	2	0.4	0.2 [6]	hydrocarbons	
													Decomposition	
													products of the polysaccharides of the	
													fuels (mainly cellulose,	
													hemicellulose and	
													starches). Toxic and	
5 C41140						0.5					-0.02	[6]	may be carcinogenic	
Furan C4H4O 2,5-Dimethylfuran			5.	2 2.4	0.9	0.5	0.2	0.2	6.6	3.1	<0.03	[6]	[28].	
((CH3)2C4H2O)				1 1	1	1	0.6	0.3	2	1	<0.03	[6]		
2-Furaldehyde			5	30	10	10	3	1	0.4	0.3	0.5	0.2 [6]		
5-Hydroxymethyl-2- furaldebude					20	10			00.03	o0.03		[6]		
furaldehyde Benzofuran			0.	5 0.2		10								1
1,6-Anhydroglucose				2 1	20	10	1	1	2	1	. 0.2	0.1 [6]		
Phenol			2											
GuH (guaiacol) GuCH3			3		9	5	2	1	7	10	0.2	0.1 [6]		I
GuCH3 GuCH2CH3			1		10									1
GuCH==CH2			20		20	10		0.5		5	0.5	0.3 [6]	-	1
GuCH==CHCH3 (E)			5	30	30	20	1	0.5	5	7	0.2	0.1 [6]		
GuCHO			2		100	100	9				1	0.4 [6]		
GuCH==CHCHO SyH (syringol)			10		3	3 200	0.7		< 0.03 20	0.3		[6] 1 [6]		
SyCH3			10			200								-
SyCH2CH3			1	10	20	10	0.8	0.3	2	. 3	0.1	0.1 [6]		
SyCHQCH2			2				<0.03	<0.03	0.05			[6]		
SyCHQCHCH3 (E)							<0.03	2						I
SyCHO Sum_of_organic				5 3	10	10	2	1	<0.03	0.2	0.1	[6]		1
compounds			60	500	50	2000	20					[6]		1
Gu: 4-hydroxy-3-methox	and a set of								•	•				

Gu: 4-hydroxy-3-methoxyphenyl Sy: 4-hydroxy-3,5-dimethoxyphenyl

Thermal degradation: TBD

Non-organic combustion proc	ucts
NOx	Formed by: 1) thermal Nox formed from atmospheric oxygen above 1300C, 2) prompt Nox formed at the flame front, and 3) fuel-NOX formed from e
H2O	
CO2	excess CO2 can also be injurious, with chloroplast disruption and chlorosis often observed above 1000 µmol CO2 mol-1 [22]
CO	
SOx	
30X	

Particulate Matter		
(PM)		Aerosol defined as suspension of particles in the range 0.001um and 100um. PM= total mass of particles and droplets.
PM20		~20,000
PM10		PM10= Particulate Matter < 10um
PM2.5	[23]	Emission factors (EF) of wheat straw is 7.6 +/- 4.1 g/kg, It also indicates that 12.1-24.2% of N in biomass is released as nitrogen-based trace gases and 1
		Efs from high and low combustion efficiency (CE) wheat stubble burns were 0.8+/-0.4 and 4.7+/-0.4 g kg-1, respectively, and decreased with increasing CE.
PM1	[26]	alkali transformation causes high emissions of PM1, peaking in the 200um-300um range

CHo. co

Schematic picture of soot formation Source: H. Bockhorn, Soot Formation in Combustion (vol. 59 in Series in Chemical Physics, Springer-Verlag, Berlin, 1994.)

-

Biomass combustion

$CH_{1.44}O_{0.66} + 1.03 O_2 = 0.72 H_2O + CO_2 (+Heat)$

Note: CH_{1.44}O_{0.66} is the approximate chemical eq uation for the combustible portion of biomass Sintered or fused deposits due to alkalis: Volatile alkali (0.34 kJ/GJ)sufficiently lower the fusion temperature of the ash [16]

Minimum and maximum cost of biomass supply (20 to 100km distance) including granulation (pelleting):

operations	LOW		ingn	Jource	
		Energy			
	Cost (\$/t)	(GJ/t)	Cost (\$/t)	Energy (GJ/t)	
Collection	19.69	0.319	23.72	0.339	[7, p.27]
Transport	6.06	0.271	23.72	0.339	[7, p.27]
Granulation (pellet)	20.53	0.471	30.85	0.821	[7, p.27]
Granulation (grind)	5.65	0.096	5.65	0.096	[7, p.27]
Total	46.28	1.006	78.29	1.509	[7, p.27]

Calculations of the net yield:

						Max fraction		Estimate of			
						removed for	Fraction	losses from			
		Dry grain		Gross	vield	soil fertility	machine can	harvest to			
Crop	Yield grain (bu/ac)	(t/ha)	Straw/grain ratio	(t/ha)		k1	remove k2	biorefinery	Net yield (t/ha)		Source
Wheat Straw	60	3.5	1	.3	4.6	0.5	0.75	0.2	1	1.822	[7, p. 9]

Sources: [1] MST MEP, p. 97

[1] MST MEP, p. 97
[2] Definition of a standard biomass, 2004 http://www.renew-fuel.com/download.php?dl=del_sp2_wp1_2-1-1_05-01-10-fzk.pdf&kat=14
[3] OMAFRA, Biomass Densification for Energy Production, 06/2011 http://www.omafra.gov.on.ca/english/engineer/fact/11-035.htm#2
[3] OMAFRA, Biomass Densification for Energy Production, 06/2011 http://www.omafra.gov.on.ca/english/engineer/fact/11-035.htm#2
[4] Wheat Straw as a Paper Fiber Source, 1997, http://www.cwc.org/paper/pap971rpt.pdf
[5] F.K. Kargbo, Xing, Y. Zhang, Pre-treatment for energy use of rice straw: A review, African Journal of Agricultural Research, vol. 4 (13), pp. 1560-1565, 2009.
[6] M. Olsson, "Concentrations of compounds in smoke from wheat straw pellets during the different combustion stages", Biomass and Bioenergy, Volume 30, Issue 6, June 2006, pp.
[7] S. Sokhansanj, J. Fenton, Cost benefit of biomass supply and pre-processing, BIOCAP Canada Research Integration Paper, Mar 2006.
[8] A. Khan, "Potential to use biomass for bio-energy in Ontario", Guelph Engineering Journal, (2), 3944, ISSN: 1916-1107, 2009.
[9] Antinpouyan Sardashti, Wheat Straw. Clay-Polyprop/tene Hybrid Composites, U. WaterlooM. Asc. thesis, 2009 Http://lidsspace.uwaterloo.ca/bistream/10012/4712/1/Sardashti_Amirpouyan.pdf
[10] Hui Y.n. biugang Lui, Dawa Shen, Zhonghua Wu, Yuong Huang, Arrangement of cellulose microfibria in the wheat straw cellual (Larbolydrate Polymers (2008)
[11] Y. Zhang, B. Min, L. Huang, I. Angeldaki, "Electricity generation and microbial community analysis of wheat straw biomass powered microbial fuel cells", Appl. Environ. Microbiol., 17 April 2009.
[12] Can Biochar Initiative Preto Dec08, pdf, Cannet Energy Canada.
[13] Ubing Straw as a Farm Headito Fuel full Oritics are for year of test - 1994"). http://www.aaric.gov.ab.ca

[14] dan bodina minastre reter Decouply, cannie Lifety canada.
[13] Using Straw as Farm Heating Feld (All prices for year of test - 1994"), http://www1.agric.gov.ab.ca
[14] http://en.wikipedia.org/wiki/Wheat
[15] Introduction to Biomass Combustion, http://www.estension.org/pages/31758/introduction-to-biomass-combustion
[16] Alkali Deposits Found in Biomass Power Plants, http://www.estension.org/pages/31758/introduction-to-biomass-combustion

[17] State-of-the-art of small-scale

[13] M.M. Roy et al., Co-combustion of Biosolids with Wood Pellets in a Wood Pellet Stove, Intl. J. of Engineering & Technology IBT-IJENS, Vol. 11, no. 3, p. 7-11.
[13] M. Kludze, et al., Impact of argonomic treatments on fuel characteristics of herbaceous biomass for combustion, relative processing Technology (2012), http://dx.dc
[20] Idris O. Sale, Torrefaction Behaviour of Agricultural Biomass, M.A.Sc. Thesis, University of Guelph, August, 2012.
[21] Hiltunen, M., et al., COMBUSTION OF DIFFERENT TYPES OF BIOMASS IN CFB BOILERS, 2008, http://wc.com/publications/tech_papers/files/TP_CFB_08_05.pdf ing Technology (2012), http://dx.doi.org/10.1016/j.fuproc.2012.09.043

[22] Intuinet, w. et al. 2007 Definition of the CHT Inter Section Deficiency and Deficiency 2007 Definition of the CHT Inter Section Definition of Deficiency 2007 Definition of Definition and Definition of Definition of Definition and Definition of De

[26] J Fagerström, I Näzelius, D Boström, M Öhman, C Boman, Reduction of fine particle- and deposit forming alkali by co-combustion of

[20] Jragers unit, macross, D bost unit, woman, counter or mine particle- and deposit forming anality co-controls unit of [27] Iennifer Ruth Dodoso, Wheta Straw ash and its use
 [28] http://en.wikipedia.org/wiki/Furan
 [29] Hui Chena, Fen Wangb, Congyun Zhange, Yuanchang Shia, Guiyun Jinb, Shiling Yuan, Preparation of nano-silica materials: The concept from wheat straw, Journal of Non-Crystalline Solids

[30] T.G. Bridgeman a, J.M. Jones a,*, I. Shield b, P.T. Williams, Torrefaction of reed canary grass, wheat straw and willow [31] http://en.wikipedia.org/wiki/Lignin

(24) THEV/JECKWAPCHURG/JECKWA JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/JECKWAPCHURG/J

Compiled by:

Jim Kozlowski, Omtec Inc., 73 Marsh Street, Ridgetown ON, NOP 2C0 Canada. Last updated: March 23, 2015

AboutWheatStraw and its Products Properties 2015aa.xlsx Local file